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1. Investigations of special cases of plane potential gas flows at
transonic speeds lead to boundary-value problems of mixed elliptic-hyper-
bolic equations. In the most interesting cases of solutions of such
problems, singular points occur on the sonic line. The determination of
the character of such a singularity often forms the essential difficulty
of the problem. Such solutions with singularities on the sonic line are
known for the Tricomi equation

a2 Y
d{;{; + dn% =0 (il)

for which they form a class of self-similar solutions., However, plane
potential gas flows are governed by the equation of Chaplygin, which can
be replaced by the Tricomi eguation near the sonic line only as an
approximation. Chaplygin's equation does not possess self-similar solu-
tions, a fact which complicates the integration of Chaplygin’s equation
with singularities on the sonic line,

In the present paper the desired solution is obtained in the form of
an infinite series. The first term of the series corresponds to the self-
similar solution of Tricomi’s equation.

2. As Chaplygin showed, the equation of a plane, vorticity-free,
adiabatic flow of a gas can be put in the form
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Here i represents the stream function, 6 the angle between the velo-
city vector and en arbitrary direction, v the speed of the flow, v  and
v, the maximal and the critical speed of the flow, respectively, and x
the adiabatic exponent.

From (2.1) it is clear that the sign of the coefficient of the last
term changes when r = r,- In this manner, when we study transonic gas
flows, we have to deal with a mixed elliptic-hyperbolic differential
equation. As Tricomi has shown [1 ], such equations are more readily in-
vestigated when they are transformed into a special canonical form, which
facilitates the determination of the main term of the solution. For Equa-
tion (2.1) such a transformation was effected by Frankl [2 ] by means of

a new variable 7:
(s (/TR T T dx )
n= (Y Y (2:2)

T

Equation (2.1) then takes on the form

N+ gt b () (2:3)

28(2B+1)r2Vn 1
b(n) = —_—— 2.4
(n) N—@B+DAVII—@B+DHd—1) 2 (2.4)

In terms of an auxiliary variable z, Equations (2.2), (2.3) and (2.4)
yield

e=VIA— (@B F D/ —0).

bm =2 LY —

ERGERET VED e

Equation (2.5) provides a parametric representation of the function
b(n) in terms of the parameter z. We note that for subsonic speeds, i.e.
forr <r’ ,» the parameter z is a real number, and 7 > 0. For supersonic
speeds z *takes on purely imaginary values with n < 0, and, therefore,
b(n) remains real for arbitrary negative values of 5. From (2.5) it is
clear that in the neighborhood of 7 = 0 the function b(3) can be developed
in an infinite series

b(n)=by-+bm--bm>+. .. (2.6)
. 2+S b. — A6+ 105x + 125
50+ 1)h ! 175 (% 4 1)"
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3. In order to find solutions of (2.3) with singular points on the
sonic line 5 = (, it is convenient to introduce still different vari-

ables

== @
and to transform (2.3) into
ap ap . L, 4 0¢ M
““ﬂhﬁ—i m»paw+3p® me p%) (3:2)

From (3.1) it follows that 7 = (3p /2)2/3(1 - t?)1/2, and hence

2 2n m
3 3

b(n) = zbn zb() P’ (—1)

Then Equation (3.2) can finally be expressed in the form

46"‘;_}_22{ ‘p

(1—12) 2 at; 3P =
2m—1 am-+3 m+1
= (¢ 3¢ Pap)z_'bm( ) et -’ (3.3)
We shall seek solutions of (3.3) in the form of the series
M2 M3 - M .
Yo, )=po@®)+p HEOFp  2falt) ... = Jp 3 "fm(t) (3.4)
m=p

Substituting (3.4) into (3.3) and equating like powers of p, we ob-
tain the recurrence relations for the determination of the coefficients

f'(t) in (3.4):
W= ) tf () (A 2n - 2) fa=
e o =
= S =) {2 m— )
" (3.5)

8™

(n=0,1,2,..)

The first relations are as follows:

A=)/ — 5t + M (A 5) /=0 (3.6)
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A=) f'—5th' + A+ 2 A+ ) fi =, () — ey fy — A10) (B.T)

(1 — ) 1" — L tfy + b L) (A2 ) fo=by( )7 — 2YH[efy'—(A + 2) 1,14
+ by (2 — " (1 — M) (3.8)
A=) — 5t + A+ )M+ D) o=
= b ()= [tfy — (0 + L) 1) +
b (B — e [ty — (M4 2) Al +ba (2) (L — ) (¢, — M) (3.9)

4. The general solution of (3.6) is expressible in terms of hyper-
geometric functions

o) = AF (—5, T+ 5, 71 ) +BtF (5 —5, & ) (4)

'3 3 2'

We note that the left-hand side of (3.7) is obtainable from (3.6) by

substituting A + 2/3 for A, so that the general integral of (3.7) can be
written

f[1(8) = for () + @1 (2) (4.2)

where the general solution f,(t) of the homogeneous part of (3.7) is
representable in the form

IOI(t)zAlF(-‘%'*‘%—)—;"+;12! )+BltF(_;"—%a ; 3’21t2)

The particular solution ¢,(t) of the nonhomogeneous equation (3.7) can
be expressed

v 1
P () = — 5 b, (5) (1 — ) 7, 1) (4.4)
as can be easily verified.
In seeking a solution of Equation (3.8), we first express its right-

hand side in terms of f,(t) as given by (4.2) and (4.4):

=" — 2t + (A +3H) (A +2) 1 =
= by () — )" [t — (A + 2 foul +
+(5)(0r — 302 (1 = (11 — M)+ (2)* L b2 (1 — ), (4.5)

Proceeding as before, we can represent the general solution of
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{4.5) as
f2(8) = foa {£) 4 @a1 (£) + @22 (2) (4.6)

where f(,(t), the general solution of the homogeneous part of (4.5), is
given by

Jol)= AF (— 3 —2, 242, 2oy ¥ ny
+ BpF (— 2 — 3, &£+ 2 2 @)
and the particular solutions by g Z'GZ =
P (1) = — 2 by (2)"(1 — )" (1) (48) 4
oz (2) = (1 — 1) [aofy () + Batfy ()] (4.9)
= (3) Fig. 1.

In this manner, the solutions of the system (3.5) are reduced to a
recurrence procedure which can be carried out without difficulties. If
in Equation (2.3) we were to neglect the term with the first derivative,
we would be reduced to Tricomi’s equation, for which each term of the
series (3.4) provides a self-similar solution.

5. Let us consider the flow around a diamond airfoil at zero angle of
attack with the free-stream speed equal to the speed of sound at infinity
(Fig. 1)*. To the flow regions bounded by the sides of the front wedge,
BC, and BC,, and by the limiting characteristics C,A and C,A, corre-
sponds the region BC,D|AD ,C,B in the plane of the variables 6, n (Fig.
2). We are led to the following boundary-value problem: find the solu-
tion (6, n) of Equation (2.3) in this region, subject to conditions

* This problem has been treated by many authors. The first and most
significant solution was that of Ovsiannikov [3 ]. Later it was
solved by Guderley and Yoshihara[ 4] by a different method. In these
papers, the problem was simplified by replacing Chaplygin’s equation
{(2.3) by Tricomi’s equation (1.1). An attempt to solve the problem in
Chaplygin’s formulation was made by Aslamov[ 5], but his solution
cannot correspond to physical reality since it becomes infinite on
the limiting characteristics.



Plane transonic gas flows 329

P4, n)=0 (5.1)

5 U} s Y= 0 on the hodograph character-
istics €D, and C,D, (5.2)
s s 90, 4 00) =0 .3

\ N PO m=—pOn (64
/ N\
3’ '}; The function ¥(f, 5) is bounded on the sonic
: 1 line C,C, and on the characteristics AD; and
AD,, and ¢ grows without limit as point 4 is

approached from within the region or along the

Fig. 2.
g characteristics AD; and AD,. (5.5)

Next, we tackle the problem of finding a solution of Chaplygin’s
equation with a singular point on the sonic line,

6. In order to satisfy the condition (5.5), we shall seek a solution
of (2.3) in the series form (3.4). For this, we must set A = - 5/3, as
has been shown by Frankl [6 ]. Hence, the series (3.4) takes the form

Yo (B, 1) = p~* /(&) + P (&) + P o (&) + PP () + . (6:1)

Using (4.1) with A = ~ 5/3, and setting A, = 0 so as to satisfy con-
dition (5.4), we obtain

fo(t)zBotF(iv _"L’ %;12)

3 ]
= 5Bl =" (3 + 1) =1+ 0" (+—1)] (6.2)
In seeking the second term of (6.1) which would satisfy condition

(5.4), we set A = - 5/3 and A; = 0 in (4.3), and with the aid of (4.2)
and (4.3) arrive at

P () = Bip™MF(1, -, &, £8) — L4 (%)./'P"U — ), (1) (6.3)
The behavior of hypergeometric functions indicates that the first
term in (6.3) becomes infinite as p approaches zero, i.e. on the

characteristics AD, and AD,, so that the condition (5.5) requires
setting B, = 0, and (6.3) simplifies to

pHA(2) = —T,lf oMP "/, () (6.4)

In order to find the third term of (6.1), we set A = — 5/3 and Ay =0
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in (4.7) and find
foa(t) = BaotF (%, L, 2 12) (6.5)

2

With B, = 0, it follows from (4.8) that ¢,,(t) vanishes. Also (4.9)
becomes

P22 (t) = % lep“'/' [(bl + ";“bl) tfo’ - (b02 + ”g_ bl) /o] (66)
Then, by virtue of (4.6) we have for the third term in (6.1)

o~y (1) = Bop=tF (3-, 2, 25 2) + p~ @as (2) (6.7)

The coefficient B, must vanish lest the leading term grow indefinitely
as p » 0, and we find

Pty () = 2 P~ Kbl + %) tfy — (bo2 + 301 o]

Substituting for fo(t) the value from (6.2), we arrive at the final
form

y Y% bty ”, "
p(t) = & Bo (3)7 (b ) ok [(1 + 0" (3 — ) + (1 — 0" (3 + 1)]—
— (0 5 b) Wk /o () (6.8)

The rest of the terms in the expansion (6.1) are bounded on the

characteristics and contain an expression with an arbitrary constant
factor, which we choose so as to make f (1) = 0 for k> 2.

In order to satisfy the condition (5.1), it is necessary for the
solution to be periodic in 6 with the period of 28. In order to make the
solution (6.1) periodic in @, let us focus on its evaluation on the sonic
line, i.e. forn =0, t=1and p=146

Vo8, 0) = fo(1) 07"+ /(1) 67" + £ (1) 67

By virtue of (6.2) and (6.8) we are led to

fo1) =2 2"B, /i(1) =0, fo(1) = — 55 BB (b + 5 b,?)

Po (8, 0) = & 2#B [67"— 2 3% (b, + L b2) 07" (6.9)

7. Let us turn to Equation (2.3) and seek its solutions in the special
form ,(8, 7) = s,(n) sin (27 n6/8). Such solutions satisfy boundary
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condition {5.1) for integral values of the index n. Substituting the
expression ¢, into (2.3), we obtain an equation for s (n):

d%, ds n2n?

If we require that s (+ «) = 0 and 5,(0) = 1, the integral of (7.1)
is uniquely determined. By virtue of (2.1) and (2.3) such an integral
can be expressed explicitly in terms of the hypergeometric functions of
Chaplygin

W (F
sn (M) = -;—(;-5)— 2, (1) = 1'F (ay, bu; 2v 4 1; 1) (7.2)

Here

v=§—:§. a, + b, = 2v—8, ab, = —Bv(2v + 1), T, =3
The convergent infinite series

oo
Y@, M) =3 Ansa()sin %e (7.3)

n=1
represents an exact solution of (2.3), satisfying the boundary conditions
(5.1), (5.3) and (5.4). In order to satisfy the essential condition (5.5),
it is necessary to choose coefficients A, in (7.3) in such a way that,
for 7 = 0 and 0 » 0, the evaluation of the series (7.3) would match Ex-
pression (6.9). Then the series (7.3) will represent a function bounded
on the characteristics AD, and AD,.

8. Next, we need to study the following special solution of Chaplygin’s
equation (2.1):

8

Fy(9, vy = > A e

A
n=1 " Fnsz (T'}

sin nf (8.1)

By virtue of the properties of the functions z,,,(r), the series
(8.1) converges for r < r, for arbitrary values o? the parameter A. In
order to evaluate the series for r = r,, we utilize a formula from the
theory of gamma functions:

1 1 o

k—) —nt E
s e——— L\ T T 8.2
ﬂ)\ I* (7\.) (eZRlA e 1) ogo ( )

Here the integration is carried out along a contour which follows the
positive real axis first above and then below, and circles the origin in
a counter-clockwise direction.

Substituting (8.2) into (8.1), we obtain
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(0+4) 0o
- 1 (™ e )
Fal0, 0 = po e OSO t ( nzzll ey einns)dt (8.3)

which, on the sonic line r = r_, becomes

1 ) t*1gin g
Fa(0 %) = po S Ty ! (8.4)

In (8.4), for small values of 6, the poles of the integrand, at
t =118, lie close to the path of integration. Taking this fact into
account, it is easy to find the representation of F\ (0, r,) as 6 » 0:
Fy(8, v)~T (1 —2)cos 2|0 " (8.5)
In particular, for A = — 2/3 and A = 2/3, we have, respectively
F_y(0,v)~T(3)cos:-n0~"  Fy, (8, v,)~T (L) cos Lnt™" (8.6)

Consequently, we choose for the coefficients of the series (7.3)

A, = C(n'— an—") (8.7)
where C 1s an arbitrary constant, and
_ 3'hT (/s) &'l bo?
C= (b + %) (8.8)
In other words, the expression
S (e — 2) B2 o ~ 3
Y(f, 1) = CEI (n n%) zv(r‘)sm 2v0 (v o= 26) (8.9)

satisfies all the required boundary conditions except (5.2). This re-
maining condition can be met by adding to the series (8.9) the following
series:

N I
Z otn-z-v(T)—sm v
n=1 *

In satisfying condition (5.2) at separate points of the character-
istics C;D, and C,D, (see Fig. 2), we arrive at a system of linear equa-
tions, which determine ap,. The actual values of a, turn out to be small
compared to the coefficients of series (8.9), so that they may be
neglected. Thus, the exact solution of Chaplygin’s equation given by
(8.9) does not vanish on the characteristics C,D, and C,D, (see Fig. 2),
but remains small.

9. Utilizing Expression (8.9) for the stream-function ¥, we can obtain
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formulas for the velocity along the front wedge. As shown by Chaplygin,
the physical abscissa is related to the potential function ¢ and to ¢
according to

=cos() sme d 91
de = ——=dp — T—F P (9.1)

and these two functions are interrelated as follows:
o9 2t o a9 1—(B+T o 9.2)

W @—nf ov v m—apt 08
Since along the pop of the wedge § = & and d¢y = 0, utilization of
the second of equations (9.2} leads to

_ cosd (_1—(BHDT (3 .
IT=—g3, % TVt — T)p+1 (ae.)ozsdt (9.3)

max -
0

From the solution (8.9) we derive

310 3 5o 2

Z, {Ty)

Substituting this into (9.3) and evaluating the integral, we find

w nh—an'h 2, (%) + 2vz, (1)

Crcosd
(=1 nin® /6% —1 2, (Ty)

Sty VT —1P

fee]
<

€ (1‘) == (Q4)

n=|

This relation determines the velocity along the wedge. In order to
establish the value of the constant C we note that

z (1) =

lim cos 8

T,

as T —>T,

where 1 is the length of the wedge; hence

7 — Cre lim °°‘ (— 1" H (% — an'sy 2, (T) + 212, (%) (9.5)
gy Voa (I t)f e, & 1o/ 871 7, (T2) .

It is important to note that in (9.5) it is not permissible to inter-
change the limiting process r » r, and the summing process because the
resulting series diverges. For the sake of brevity let us designate

y gt arz%) z, (1) + 27z, (1)
nid /8t —1 z, (1,)

S, = lim y (—1
T>T, —

(9.10)
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and rewrite (9.5) as
Cn

l = p— 5
80 ax ¥V Tall—1,)

S (9.11)

10. The expression for the coefficient of pressure for the case of
sonic free-stream velocity reads:

Co= bl = 2| (1221 (10.1)

I/L’Paa*z 1 — Ta

By integrating along the front wedge we find the drag coefficient:

i

2tand ¢ 2wad 2 tand dc

C,= 2 &cpdx.: i Sc md :._mil-—&xd—:dr (10.2)
0 0 0

Upon substitution of the expressions for x and dC /dr from (9.4) and
(10.1), we are led to

. 8ne sin Pl nt— agnV V'rz (7)
C. = — Yt d
d(x—1) (1 —71,)F* 1y X (=1 nir? [ §F — ( 2,(T,) ) r

max ¢ ey

Evaluating the integral, we finally arrive at

— 8ncsin d ¥, .
B E—1)(—1,) S (10.3)

where

o0 5/’_ Vs
Sp= R (=" e

TR T (10.4)
Eliminating the constant C from (10.3) with the aid of (9.11), we
obtain

C.= 4sind 52 (10.5)

11. In order to evaluate the limit S, in (9.10), let us rewrite it in
the form

v (— 1)n+1(n5/s —an'®)  2,(17) ol (- 1)1 (0¥ an'hy 2tz (T)
nin? /8% —1 2, (Ty) ! Zl nin? /& —1 2, (Ty)
1

T-»Ty n

s 00 (— ,t)n-f"l (ns/‘—an}/“) 21?1‘,'(17)
Sy = l“f‘ 2 it 8T — 1 PRCA) (11.1)
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In the evaluation of S, we use the asymptotic formula [7 ]

2%z, (T4) As A
_Fv AT +/s —_—
z, (Ty) A+ 4y 4 v +O(V'/’>
22/331/31‘ 2 , 1 2% + 5

and transform (11.1) as follows:

b (_1)11.-{-1 (nb,v": o anl/:) 2%z’ (T)
S3 — llm 2 ( d — Al'Vz/r (

=)+

T Tep—y nind / 6 —1 Zy (Ta)
e n 1 _ /g %, n
4 kﬂl § ( 1n2;2 /(gz an') Aln’/’(za> (?‘:) (v = l%‘) (11.2)

In proceeding to the limit in the first summation, we find a con-
vergent series; denoting it by S,, we have S; = S, + S, where now

S5_11mA< )/’2 (=" (" —"") (L)" (11.3)
n=1

nin? [ 6% — T,

This expression can be rewritten in the form

Se= F(2) lim 2 s () — 22(5) “z S

however

D (™ = () = 2( SRR

n=1 n=0 k=1

According to the well-known properties of the {-function [10 ], we

have "
lim }J (_%1_)—1:1 (+) = =2 (2%—3)

T Ty pey.

In this manner we finally arrive at

(11.4)
S, — Ay % 1 2‘/:—27{ ) 2hitth Ala i 11’l+1 n
* ﬁm( - )¢ (2~ ( =) 2% 'n=1(— VU e =i

All the investigated sums can be represented in the form of power
series in the variable §/7. A similar representation can be carried out
for the drag coefficient C,. Detailed calculations of C, for different
angles & will be presented in a separate paper.

12. Gas flov around a flat plate at sonic speed. Let us
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consider a plate of length l (or an airfoil with a flat lower surface)
at an angle of attack & in a stream which has a sonic speed v = a,

(Fig. 3).

The flow field is represented in
the hodograph plane in Fig. 4. All
streamlines issue from the point 4,
which corresponds to the flow at in-
finity, and which therefore appears
as a singular point.

The problem reduces to the deter-
mination of the stream function ¢
satisfying the Chaplygin equation
(2.1) in the region AB’BOCC’ A,
which possesses a singularity at A
and vanishes on part of the boundary,
namely C’'COBB’ (see Fig. 4). The
solution of this problem within the
framework of the Tricomi equation
has been obtained by Guderley [8 1.

Pig. 3.

Following the method already pre-
sented, we construct a solution of
Chaplygin’s equation, which satisfies all the required boundary conditions
except the vanishing of ¢y on BB’ and CC’. Letting § = n in (8.9), we
obtain a special integral of (2.3) in the

g form

(12.1)

sin nf

1(6, ©) ::czg (

n=1

Zna ()
) z'"'/2 (1:.)

To this expression it is necessary to
add a function ¢,(6, 7), even in the vari-
able @, so that ultimately the flow around
the flat plate at an angle & may be found.
Considerations analogous to those used in
the preceding development of (2.1) lead
to the expression

(12.2)

Fig. 4. (1)
) %*CZ i z"/z(t) cosnf (¢, ¥ = const)
n's “pp \ls

n=31

Superposing the solutions ¢; and i,, we find the integral

b= b b =e X [ (oo of ) sinno 4 ]—#l (12.3)
n'’? n

ne=1 z n/2 (To)
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which has the required singularity at the point A. In order to satisfy
the conditions of the flow geometry, we add to i, an analogous expres-
sion, corresponding to a singularity at A’ (see Fig. 4), a point which
is a mirror image of A with respect to the segment BC:

Po(t, 8) =c él [ (n"" —

a
s

Jsinn 0+ 28)— L n (6<;-26)]ﬁ.~'3""
4 nr'

T (Te)

Then ¢ = Y + lzo will appear as the desired solution: (12.4)

a T N zn/z (T)
cosnd - ——sin né} —
nh \’ . e Zpie (T‘)

‘D=¢o+{§o:c§; [(n’f’»— sinn(f + §)

The constant y is determined from the condition that O (Fig. 3) must
be a branch point of the stream function [9 ]. For this it is clearly
necessary for the coefficient of the first term of the series (12.4) to
vanish so that

(1 —a)cos8 + ysind =0

Consequently
7 =(a—1) <o 8.

Substituting this value of y into (12.4), we find (12.5)

= Cz l'(nz/, — L)sin6COs nd —fw?—;;;lcosésinnb }M sinn (8 4 9)

e Tnf (1:.)

This solution does not vanish on the characteristics BB’ - and CC’,
as required, but its values there are small. The constant ¢ can be ex-
pressed in terms of the length of the plate just as in the case of the

wedge.
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